T-QARDメンバーが日本物理学会第79回年次大会 (北海道大学札幌キャンパス) で発表しました。
- 平間草太 (2024/9/16, 口頭) 「量子アニーリングとDantzig-Wolfe分解を用いた厳密解法の検証」
- 鹿内怜央 (2024/9/16, 口頭) 「疎結合代理モデルと量子アニーリングマシンを用いたブラックボックス最適化」
- 森田圭祐 (2024/9/17, 口頭) 「オンライン機械学習手法を用いた高次元ブラックボックス最適化について」
T-QARDメンバーが日本物理学会第79回年次大会 (北海道大学札幌キャンパス) で発表しました。
T-QARDメンバーが第35回計算物理学国際会議 (CCP2024, ギリシャ,テッサロニキ) で発表しました。
T-QARDメンバーが国際会議 Adiabatic Quantum Computing Conference (AQC 2024, スコットランド, グラスゴー) で発表しました。
深層学習では計算効率を高めるために大規模バッチ学習(LB)が盛んに使われますが、経験的に「テスト精度が下がる」という問題が知られています。本記事では、その原因を「損失関数の谷の形状」という観点から探り、数値実験を通してLBが鋭い谷に、小規模バッチ(SB)が平坦な谷に収束しやすいことを示します。さらに、両者の利点を活かすために提案された「ウォームスタート」の効果を紹介し、汎化性能をめぐる新たな理解と今後の課題について考察します。
read
渋滞を解消するような交通信号機の最適化は、ドライバーのストレス軽減やCO2削減量の削減という点において重要です。現在の日本では、定周期制御と交通感応制御という2つの方法を併用しています。交通感応制御ではリアルタイムに交通情報を取得し信号の状態を決定するため、高速な計算が求められており、量子アニーリングの活用が期待されています。量子アニーリングを活用したR. Shikanai らの先行研究では、曖昧なパラメタが存在し、モデル予測制御も導入されていません。本研究ではそのような曖昧なパラメータを除去し、モデル予測制御を組み込んだイジングモデルを提案します。
read概要 記事「量子アニーリングマシンによる配送計画」で扱った論文では、CVRP(容量制約有りの配送計画問題)を量子アニーリングマシンと古典コンピュータを用いたハイブリッドな手法で解き、その性能を古典コンピュータと比較してい […]
read本記事では量子アニーリングマシンによる数分割問題の計算時間を、総当たりによる計算時間と比較することによってその有用性を確認します。
read