T-QARD Harbor

               

T-QARD Harbor

T-QARD Harborは東北大学量子アプリケーション研究開発センター学生チーム「T-QARD Crews」が運営する、 数理情報統計、量子情報、最適化、機械学習分野の情報を提供するWebサイトです                

お知らせ

学会発表: INQA Conference 2024

T-QARDメンバーが国際会議 INQA Conference 2024 (日本, 東京) で発表しました。

  • 平間草太 (2024/10/17, Poster) “Improving Lower Bound Accuracy for Combinatorial Optimization Problems Using Dantzig-Wolfe Decomposition and Simulated Annealing”
  • 森田圭祐 (2024/10/17, Poster) “Bayesian Optimization using Factorization Machines and Annealing”

学会発表: 日本物理学会第79回年次大会

T-QARDメンバーが日本物理学会第79回年次大会 (北海道大学札幌キャンパス) で発表しました。

  • 平間草太 (2024/9/16, 口頭) 「量子アニーリングとDantzig-Wolfe分解を用いた厳密解法の検証」
  • 鹿内怜央 (2024/9/16, 口頭) 「疎結合代理モデルと量子アニーリングマシンを用いたブラックボックス最適化」
  • 森田圭祐 (2024/9/17, 口頭) 「オンライン機械学習手法を用いた高次元ブラックボックス最適化について」

学会発表: CCP2024

T-QARDメンバーが国際会議 XXXV IUPAP Conference on Computational Physics (CCP2024, ギリシャ,テッサロニキ) で発表しました。

  • 宮本誠也 (2024/7/10, Oral) “Efficient sampling in a glassy phase using a machine-learning-assisted Markov Chain Monte Carlo Method”
もっと見る »

先行研究の記事

GPT-QE : Transformerによる量子回路の最適化

Transformerを用いて量子回路を生成するアルゴリズムGPT-QEの有効性を、量子化学計算タスクで実証した論文を紹介します。既存のデータセットを使用した事前学習と、事前知識なしでの学習の双方により、量子計算コストを削減した学習を行うことが可能になります。

read

量子アニーリングを活用した非負二値行列因子分解による画像分類

非負二値行列因子分解(NBMF)は、元々量子アニーリングを用いて学習される生成モデルとして提案された手法です。以前の研究ではNBMFを用いた顔画像の再構築といった課題が扱われてきました。しかし、NBMFを他の機械学習課題に応用したり、他の機械学習手法と比較したりする試みはほとんど行われていませんでした。そこで本論文ではNBMFの応用として多クラス画像分類モデルを提案し、手書き数字画像データの分類問題に対して、提案手法と古典的な機械学習手法を比較して、その有効性を評価しました。その結果、データ量、特徴数、エポック数が少ないという特定の条件下で、NBMFがニューラルネットワークなどの従来手法よりも高い分類精度を示すことが明らかになりました。さらに、量子アニーリングマシンを用いることで、学習にかかる計算時間を大幅に削減できることも示されました。これらの結果から、特定の条件下において、機械学習に量子アニーリング技術を活用することの有効性と利点が明らかとなりました。

read
もっと見る »

実践記事

【実践編】量子アニーリングとADMMのハイブリッド方式による不等式制約への対処

解説記事「量子アニーリングとADMMのハイブリッド方式による不等式制約への対処」では、不等式制約付きの組合せ最適化問題を解くために、量子アニーリング(QA : Quantum Annealing)と ADMM(Alternating Direction Method of Multipliers)を組み合わせた手法を提案した論文を紹介しました。本記事では、そのアルゴリズムを実装し、元論文の再現実験を行います。

read
もっと見る »