ボルツマン機械学習では対数尤度関数を最大化するために、ギブス・ボルツマン分布からのサンプリングによる平均値を計算する必要があります。その方法の一つとして、マルコフ連鎖モンテカルロ法 (MCMC) が使われています。しかし、MCMCは初期状態から平衡状態への緩和に長時間の計算を要する場合があります。また、緩和した後も平均値を精度良く求めるための十分なサンプリング数の確保に時間がかかるといった課題もあります[1]。そこで本論文では、D-Waveマシンから得られる出力の分布がギブス・ボルツマン分布に近いことを利用して、平均値の計算にD-Waveマシンを用います。本手法により、手書き数字画像の生成・復元が可能であることに加え、ランダムなイジング模型も学習可能であることを示します。
read