T-QARD Harbor

               

T-QARD Harbor

T-QARD Harborは東北大学量子アプリケーション研究開発センターT-QARDが運営する情報統計学、量子コンピュータ、最適化、機械学習分野の情報を提供するWebサイトです                

お知らせ

学会発表: AQC 2024

T-QARDメンバーが国際会議 Adiabatic Quantum Computing Conference (AQC 2024, スコットランド, グラスゴー) で発表しました。

  • 宮本誠也 (2024/6/11, Oral) “Efficient sampling in a glassy phase using a machine-learning-assisted Markov Chain Monte Carlo Method”
  • 平間草太 (2024/6/11, Poster) “Development of Exact Solution Method for Binary Quadratic Programming Problems Using Quantum Annealing and Dantzig-Wolfe Decomposition”
  • 高林泰成 (2024/6/13, Poster) “Optimization of connection patterns to base stations with Quantum Annealing”
  • 森田圭祐 (2024/6/13, Poster) “Fast algorithm for Bayesian optimization of high-dimensional combinatorial problems”

日本物理学会2024年春季大会

T-QARDメンバーが日本物理学会2024年春季大会 (オンライン) で発表を行いました。

  • 西山颯大 (2024/3/18, 口頭)「一般の活性化関数を持つ全結合2層ニューラルネットワークの記憶容量」
  • 森田圭祐 (2024/3/18, 口頭)「Factorization Machinesを用いたベイズ最適化の性能評価」

APS March Meeting 2024

T-QARDメンバーがAPS March Meeting 2024 (アメリカ合衆国ミネソタ州ミネアポリス) で発表を行いました。

  • 岡田朋久 (2024/3/6, Oral) “Acceleration in optimization using bayesian optimization for broad permutation space”
  • 平間草太 (2024/3/8, Oral) “The Efficient Exact Solution for Binary Quadratic Programming Problems by Quantum Annealing”
もっと見る »

先行研究の記事

量子アニーリングで人工素材を設計する “FMQA”

持続可能な社会を実現するためのエネルギー変換や環境浄化、医療などの分野での応用が期待されている「メタマテリアル」の設計図を効率的に探すための手法として「ブラックボックス最適化」技術を用いることが提案されています。ブラックボックス最適化では、すでに性能がわかっている素材の設計図をもとに、より「優れた」設計図を探すための最適化問題を作成し、それを解くことで最適な設計図を探します。本論文では、この最適化問題を量子アニーリングを用いて解く試みを行います。

read

D-Waveマシンを利用した材料探索

マテリアルズ・インフォマティクスにおいて、所望の物性値を持つ材料の組合せを高速に探索することが求められています。しかし、材料の組合せ数は膨大であり、物性値の計算(評価)にも時間的・金銭的コストが掛かることが一般的です。ブラックボックス最適化では、出来るだけ少ない評価数で所望の組合せを得ることを目指します。一方で、物性値が高いほど良い訳でもなく、合成のしやすさも重要な指標になっています。そこで本研究では、モデルのパラメータをサンプリングする際に分散を調整することで、多様な材料の組合せを得る手法を提案しています。それにより、物性値の高い様々な組合せを得られることが示されました。

read
もっと見る »

実践記事

SAT をサーベイ伝搬法で解く

本記事では,ランダムな 3-SAT のインスタンスを解くアルゴリズムをいくつか実装して性能を比較します.そして,サーベイ伝搬法に基づいたアルゴリズムが高い性能を持つことを確認します.

read
もっと見る »