組合せ最適化問題の中には制約を持つ組合せ最適化問題が多く存在します。そのような制約付き最適化問題の解法として大関法と呼ばれる手法が知られています。大関法は、量子アニーリングやマルコフ連鎖モンテカルロ法のようなボルツマン分布からのサンプラーと勾配法を組み合わせた手法であり、サンプリングと勾配法によるボルツマン分布の更新を反復的に繰り返すアルゴリズムです。大関法によって得られる解の精度は、分布の更新の際に用いられるステップサイズと呼ばれるパラメータに大きく依存する一方、反復ごとのステップサイズの適切な調整は困難です。その問題に対処するために、本論文では深層展開と呼ばれる深層学習技術を大関法に適用しています。
read