クラスタリングとは、教師無し学習の一つで、類似した特徴を持ったデータが同じグループに属するようにグループ分けすることを言います。主な手法にk-meansや階層型クラスタリングがありますが、これらは局所探索法であるため厳密解に到達する保証がありません。一方で、SAや遺伝的アルゴリズムのような大域的な探索手法では実行時間が長くなってしまいます。
そこで、本論文では高速に実行可能な量子アニーリングを利用します。まず、量子アニーリングマシンで計算可能な形でクラスタリングを定式化します。そして、それらの問題を解いた結果をk-meansと比較し、提案手法の利点と欠点について議論します。
